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Hysteresis and self-organized criticality in the O ( N )  model in 
the limit N+ 00 

Deepak Dhart and Peter B Thomast 
Theoretical Physics Group, 'hta Institute of Fundamental Research. Homi Bhabha Road, 
Bombay 400005, India 

Received 19 Februaly 1992 

Abstract. We consider the response of the ferromagnetic N-vector model to a sinusoidally 
varying external magnetic field in the large-N limit. In all dimensions d > 2, we show 
that a t  low frequencies W ,  and small amplitudes H, of the field. the area of the hysteresis 
loop scales as (HQw)'~~ with logarithmic corrections. At vey high frequencies, the 
area varies as H i l w .  We find that for any H, there is a dynamical phase transition 
separating these two frequency regimes. We determine numerically the critical frequency 
as a function of the field strength. In the high-frequency phase the magnetization is 
predominantly transverse to the exlernal magnetic field. 

1. Introduction 

The basic phenomenology of hysteresis has been known for a long time. In the 
simplest setting, hysteresis can be observed when a system is driven away from equi- 
librium by a periodic perturbation. It is particularly noticeable near a first-order 
phase transition. The familiar S-shaped hysteresis loops are widely used as the signal 
of first-order phase transitions, in the iaboratory ana in Monte Cario simuiations. 
However, at present there is no satisfactory statistical mechanical theory of hystere- 
sis starting from the microscopic dynamics. In this paper, we study the hysteretic 
response of an isotropic ferromagnetic system, to an external, oscillating magnetic 
field. A better understanding of hysteresis may also have technological applications, 
for example in designing the materials of transformer cores. 

There are qualitatively two kinds of magnetic systems, namely Ising-like systems 
and ontinuous-spin systems. In Ising-like systems, the system has to cross a free- 
energy barrier for the order parameter to change sign (in a d-dimensional system of 
size L the barrier height goes as JLd- '  where J is the exchange coupling), while in 
isotropic continuous-spin systems, the magnetization vector can turn without encoun- 
tering any free-energy barrier. Hysteresis in systems with a free-energy barrier has 
been studied by many authors ii-8j. Agarwai and Shenoy iij studied hysteresis in a 
one-wmponent order parameter system, in which the free energy has two competing 
minima separated by an energy barrier. Fluctuations which enable the order parame- 
ter to cross the energy barrier were modelled by Gaussian white noise. This work was 
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extended by Mahato and Shenoy [Z], to find the first passage time probability distri- 
bution in this model. While such a description explains the gross phenomenological 
features of hysteresis in many systems, it is essentially a mean-field approximation, 
ignoring the effects of short-range correlations. Tom6 and de Oliveira [3] have stud- 
ied the response of the two-dimensional Ising model to a time-dependent oscillating 
magnetic field in the mean-field approximation. They ignored the microscopic fluctu- 
ations and obtained a single differential equation for the magnetization, describing a 
particle in an oscillating double-well potential without noise. Jung et al [4] have also 
studied the hysteretic response of bistable systems in a similar model. None of the 
above descriptions include the effects of spatial fluctuations in the order parameter. 

There has been relatively less work on hysteresis in spatially extended, interacting 
systems. In two recent important papers Rao et a1 [5 ]  (RKP) have studied hysteresis in 
interacting spin systems. In them, they also studied hysteresis in the two-dimensional 
Ising model by Monte Carlo simulations. Acharyya and Chakrabarti [6 ]  have made 
similar simulations in two to four dimensions. Lo and Pelcovits [7] extended the work 
of RKP to larger systems. They found evidence for a dynamical phase transition in 
the problem, and estimated scaling exponents for the area of the hysteresis loops, A 
numerical simulation of the hysteretic response of a ZD scalar d4 field in the presence 
of an external sinusoidal field using cell-dynamics, was made by Sengupta et al [SI. 
Their results were in good qualitative agreement with Lo and Pelcovits. 

Amongst these papers, only RKP deal with hysteresis in continuous, interacting 
spin systems. They studied hysteresis in the three-dimensional O(  N - M) model in 
the presence of sinusoidal and pulsed external fields by numerical integration of the 
equations of motion. They found numerical evidence for the existence of a dynamical 
phase transition at sufficiently high frequencies. That is, they found that for any field 
strength H,,  there appears to exist a corresponding critical frequency w,( H o ) ,  so that 
for w > w c ( H , )  the loops d o  not possess inversion symmetry. RKP also studied the 
Ho and w dependence of the area of the hysteresis loops. An important observation 
they made was that at low frequencies the area of the hysteresis loops has a power- 
law dependence on the amplitude and the frequency of the external field, i.e. the 
area scales as H ;  w@. Their numerical estimate of these exponents were a rz $ and 

In this paper, we study the response of a continuous spin system to a sinusoidal 
external field. We consider the ferromagnetic N-vector model with dissipative dy- 
namics in the limit N -+ 00. This is the same model as studied by RKP. Like them, 
we study the shape dependence of the hysteresis loops as a function of the ampli- 
tude and frequency of the external field. However, our detailed results differ from 
theirs in some important ways. Firstly, we find that the stable hysteresis loops retain 
their inversion symmetry for all field amplitudes and frequencies. However as the 
frequency of the external field is increased, there is a dynamic phase transition to 
a phase where the magnetization is predominantly transverse to the direction of the 
magnetic field. We obtain the critical curve numerically. For small H ,  and U, we 
show that the area of the hysteresis loop scales as (How)”? with logarithmic cor- 
rections. The slowly-varying corrections to scaling are presumably responsible for the 
difference between the asymptotic exponents a = 4 = and the effective exponents 
determined numerically by RKP. 

The paper is organized as follows. The model is defined in section 2, and the 
integro-differential equations resulting from the dynamics are derived. In section 3 
we rewrite the dynamical equations taking into account the possibility of a non-zero 

P E  5. 
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transverse magnetization in the system. Section 4 summarizes our numerical work. 
We show the typical behaviour of various dynamical variables for different amplitudes 
and frequencies of the external magnetic field. We also solve for the critical curve 
in the space of the amplitude and the frequency of the field. In section 5 we study 
theoretically the qualitative behaviour of the differential equations at low frequencies 
to estimate the area of the hysteresis loop in the limit of small fields and frequencies, 
and hence determine the scaling exponents a and p, We also obtain the high- 
frequency behaviour of the system, including the asymptotic form of w,( H , )  for 
small and large H ,  analytically. In section 6, we summarize our results and argue 
that the scaling exponents at low and high frequencies obtained in this model are 
generally true for all continuous-spin systems. We also point out that the occurence 
of such robust power laws in this problem may be viewed as a particular example of 
self-organized criticality. 

2. The N -vector model 

We consider an N-dimensional vector field + in a &dimensional space whose Hamil- 
tonian is given by 

,. i -  r U 

V 4 N  
E = -/ d d z  ($A+)2 - 5+. ++ -(+ .+)'- If. + 

We study the time evolution of this model. This is assumed to be governed by 
dissipative Langevin dynamics, the equations of motion being 

The unit of time is chosen so that the coefficient of 6E/6+ is -+. P ( z ,  t )  is Gaussian 
white noise satisfying 

( o ( z , t ) )  = O  ( v i ( z , t ) q j ( z ' , t ' ) )  = T 6 i j 6 ( z - z ' ) 6 ( t - t ' ) .  (3) 

These equations are known to give the correct equilibrium behaviour if the magnetic 
field H is independent of time. It is reasonable to assume that the microscopic 
dynamics is unchanged if H depends on time. The relaxation to equilibrium in this 
model was first discussed by Mazenko and Zannetti 191. Let the first component of 
4 be in the direction of the magnetic field H .  Since all the transverse modes are 
equivalent, assuming no syrntnetry breaking, ( + i )  vanishes except when i = 1. Define 
m(t )  and 6+;(z , t )  by 

( 4 ; ( ~ , t ) ) = ? ~ ~ ( t ) 6 ; , i  6 @ i ( z , t ) =  + j ( z > t ) - ( + i ( z , t ) ) .  (4) 

The angular brackets denote the stochastic average over the noise. Let 

(5) 0 I- -1  I\ - is* 1-  *!.SA 1 - 1  + \ \  
" I ( *  - * , L, - \"Vi(*, L,"Yi\* . ' I /  

and its Fourier transform be C;(q,i). In the limit of N - CO, many simplifications 
occur. In this limit, it has been shown [9] that n7(t) and Ci(q,t) ( i  # 0) get 
decoupled from the longitudinal mode C,(q, t ) .  Using the symmetry of the transvene 
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modes, the subscript i can be dropped, and any of the perpendicular modes are 
described by C L ( q , t )  Cq(t) ,  The equations for the C,(t)s close on themselves 
and do not involve higher-order correlation functions 191. One then finds that the 
rescaled m(t)  and C,(t) evolve according to 

D Dhar and P B Thomas 

dm 1 d C  -= - [ A ( t ) m ( t ) + H ( t ) ]  * = T -  [ q * - A ( t ) ] C , ( t )  
d t  2 

where 

A(1) = P - um(t)’ - u S ( t )  (7) 

and S ( t )  is the total fluctuation per transverse component of 4 at time t 

C, has spherical symmetry. An ultra-violet cut-off at q,,, has to he introduced 
to make the problem well defined. This is chosen, by analogy with the natural 
Brillioun zone cut-off in lattice models, to be such that the volume of a sphere in the 
d-dimensianl! mnment??m s p x e  is pry. G.3 oiwx -..- 

We choose the time dependence of the external magnetic field to be a simple sinu- 
soidal function H ( t )  = H ,  sin w t .  These equations are essentially the same as those 
studied earlier by RKP. 

These equations can be easily solved in the special case when the magnetic field 
H is independent of time (the w - 0 limit). In this case the system relaxes to its 
thermodynamical equilibrium state after large times. The steady-state (equilibrium) 
value of the magnetization meq( H )  is obtained by equating the various derivatives 
in (6) to zero, giving 

D = r m , q ( H ) - u m ~ q ( H j - u m , q ( H ) S ( H j + H  

We can solve for ?ne,( H )  from these equations and (8). 
The behaviour of meq( H )  is well known from the equilibrium statistical mechanics 

of the N-vector model. In one or two dimensions there is no ferromagnetic phase 
transition and hence no jump discontinuity in nz at zero field, when T is finite. In 
three or more dimensions, there is a jump discontuity in n ,  at H = 0, below a 
critical temperature T,. In three dimensions, dnz/dH has a square root singularity 
at H = 0 below Tc, while in four or more dimensions its value is finite. The 
spontaneous magnetization in d dimensions (d > 2 )  when T < T, is 
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T, is the temperature above which m, = 0. 
When the frequency is non-zero the situation is more complicated, and non- 

equilibrium effects come into play. We shall only consider the case when d > 2, 
when there is spontaneous magnetization. At small but finite frequencies the graph 
of m versus H is the familiar hysteresis loop (see figure 1 later). When the frequency 
is sufficiently small so that the timescales associated with the relaxation of the system 
become much smaller than l / w ,  the hysteresis loop should approach the equilibrium 
U U L l U ,  P.'" Ilb..UC 1w a.Ca DllUUI" D l l l l l l h  L U  LGIU. 11 LUG LIcq"c,LL.y "I LllC 'l,,,p,Lluc 

of the external field is increased, the area of the loop initially increases. It reaches a 
maximum, and for larger frequencies it decreases again. From a numerical solution 
of (6), (7) and (8) RW saw that at low frequencies and fields, the area W of the 
loops could be fitted to a power law, 

-1m70 nnrl  hanpn :to nran rh-. . lA ch-:..lr 6,. ---- TC It.- -- r L -  ---l:&.,l,. 

W - HFwp (12) 
. _ - . _  

with a 
correct, but with a = p = $, 

$ and p E $. In the following we show that the power-law behaviour is 

3. The existence of transverse magnetization 

The question of whether there exists a dynamical phase transition in the model is an 
important one. In the limit of high frequencies, the spin system cannot respond to  
the external magnetic field. Hence the magnetization vector is expected to oscillate 
around any initial direction with magnitude m 2 mo. Thus at high frequencies, there 
may be a dynamical phase transition, with a new phase where the hysteresis loops 
do not possess inversion symmetry. This has been observed numerically hy RKP. A 
difficulty with their treatment is that they have ignored the possibility of a non-zero 
transverse magnetization in the steady-state solution, since the direction in which the 
spins align need not be parallel to the external field. In terms of (6). C, can have 
a delta function at q = 0. For numerical accuracy it is important to take this into 
account explicitly. Therefore we write 

cq,itj = (2rjdm:(tjs(qj  + Cq(tj. (ij) 

With this, we can rewrite the equations of motion (6), (7) and (8) as 

where 

A(1j = 1'- um(1)'- um:(l) - us(1) 

It is clear that (14) permits a solution with 7 7 1 :  = 0 at all times, which is the 
solution obtained by RKP. This is also the thermodynamically stable solution in the 
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presence of a constant field H .  However, if the field H = 0, then non-zero values of 
m: are allowed satisfying m2 + mf = mi, by the O ( N )  symmetry of the problem. 
In general, the solution with mt  = 0 need not be stable for all H ,  and w .  In order 
to check the stability of the solution with m: = 0, we can formally integrate (14) to 
get 
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m f ( t  + 27r/w) = nz:( t )  exp A(t’)dt’ I! 1 
where J implies integration over a period 21r/w. From this it follows that the nzi = 0 
solution is unstable if 

!A(t’)dt’ > 0 .  (17) 

When the system is in thermal equilibrium in the presence of a constant field H ,  the 
solution with m: = 0 is stable, because 

which is always negative. 
By continuity, the solution with m: = 0 is also stable at low frequencies. However 

at high frequencies, the average value of A(1) over a cycle becomes positive if ,712, 

is held at zero, implying an instability in this solution. If J A ( t )  d t  > 0, thc avcragc 
value of m: increases with time. But increasing mt will decrease the growth rate A 
[from (15)]. In the steady state, the amplitude of m: reaches a value such that 
$ A d t  becomes equal to 0. Hence the stable steady-state behaviour of (14) and 
(15) at high frequencies is a solution with m: # 0. We find that then the average 
of m(t)  over a complete cycle is zero at all frequencies. This implies that at high 
frequencies, the spins align coherently in a direction transverse to the applied magnetic 
field, and m(t)  never loses its inversion symmetry. There is a curve in the H,-w 
plane separating regions between which m2, = 0 and m i  # 0. This phase transition 
is quaiitativeiy different to the aynamicai phase transition in hysteresis tinat has been 
discussed so far [3-5,7,8], where a t  high frequencies J m(t )  d t  # 0. 

The onset of transverse magnetization by an oscillating magnetic field may seem 
counter-intuitive at first. This can be understood in the following way. The exchange 
energy (the dominant energy in the problem) is minimized if the magnitude of the 
total magnetization vector is non-zero at all times. Only its diredion can vary sig- 
nificantly in time. Consider the total magnetization vector of the system. At low 
frequencies it is possible for the magnetization to follow the direction of the external 
field, and the fractional amount of time spent in magnetization reversal (the only 
time when the transverse components are significant) is small. As the time period is 
decreased, this fraction increases. If the field is oscillating too fast, the average spin 
direction cannot follow the field. At this level of approximation all directions are 

tions of order l / w  about any arbitrary initial direction. However. a spin transverse to 
the field can respond more readily to a changing field than one that is parallel to the 
field (the restoring force is proportional to the sine of the angle between the field and 
the magnetization vector). In addition, since the phase space for an N-dimensional 

Pq.iv./a!Pn!, 2nd E! high fre.q.e.ncies the. magne!iza!jar! vector can muke small osci!!a- 
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spin is much larger in the transveme directions, it follows that at high frequencies 
an overall transverse direction of magnetization would he favoured, compared with 
a longitudinal direction. By this argument, we would also expect a similar phase 
transition to occur at large frequencies in the N-vector spin model for finite N. 

4. Numerical results 

We have to integrate (14) and (15). These are nonlinear, and the only known way of 
solving them is by numerical integration. The dynamical variables m ( t )  and m f ( t )  
depend on A(t), which is a function of m, mi  and 3, the integral of Cq over all 
the momenta. It is useful to define the new variables F ( q )  

F ( q )  ( a )  ' d ,  Cq qd-' 

¶In,, 

so that 

From (6), F( q) satisfies the equation 

In order to evaluate S ( t ) ,  we choose special values of q. and estimate the integral by 
Gaussian quadrature. These equations along with the equations for m ( t )  and n ~ : ( t )  
in (14) and (15) form a system of nonlinear, coupled differential equations. 

In our numerical analysis, we have worked in d = 3 dimensions. To find the 
relevent parameter range, we note that typically the critical temperature of ferromag- 
nets h of the nr&r of hundreds of degrees Kelvin, while the maximum fields are less 
than a few thousands of Gauss. The reduced magnetic field is therefore less than 
one degree Kelvin, so in our units the region of interest is when H, << T,. The 
frequency associated with spin relaxation is of the order of lo8 Hz (which is unity 
in our units). For fields of the order of a few Gauss, the ferromagnetic resonance 
frequency in ferrites is of the order of lo9 Hz (w o 10 in these units). Hence in 
the laboratoty, it is possible to study hysteretic behaviour in ferrites, on both the 
low-frequency side of the ferromagnetic resonance frequency when w < H, and also 
the high-frequency side, when w > H,. We have chosen 1' = U = 0.1. With this 
choice, T, = (6?ra)* I3 /3 5.0642. The temperature was chosen to be T = 1, which 
is well below T,. 

For very small values of H,. when r,  U and q,,, are much larger than H , ,  
these equations become 'stiff', and standard integration packages like the Runge- 
Kutta method take a long computation time. Of the several integration techniques 
we tried, we found that the Richardson extrapolation method [lo] worked hest. In 
this technique, the key idea is to use a set of difference equations with various step 
sizes At to evaluate a sequence of approximations to the dynamical variables after 
a macroscopic time step, and estimate their values in the limit A t  - 0 by rational 



4914 D Dliar and P B Thornas 

function extrapolation. We have chosen the sub-intervals At to be sufficiently small, 
so that the extrapolation errors were within 

Normally the difference equations for time intervals At are generated by the 
‘modified-midpoint method’, and the whole procedure is known as the ‘Bulirsch-Stoer 
algorithm’ [lo]. However these equations are so stiff that no advantage is gained over 
conventional methods like the Runge-Kutta, unless the difference equations used are 
stable when At is large. Our choice for the difference equations is based on the 
observation that if A(t)  is known, then the equations for nz, 711,; and e, are linear, 
and decouple from each other (14). The difference equations were generated by 
keeping A constant and equal to its value at the beginning of each sub-interval, and 
then using the explicit integrated functions over finite time intervals. It is clear that in 
the limit At - 0, the differential equations can be derived from them. This procedure 
considerably reduced the problem of stiffness at very low frequencies. However, at 
high frequencies the variable step fourth-order Runge-Kutta method worked more 
efficiently. 

E 

. .  
were HO = 0.1 and w = 0.001). 
Superposed on this are the poinu H wnesponding to equilibrium. 

We find two qualitatively different regimes in the H o w  space, separated by the 
critical curve. In figures 1 to 6, we show the typical behaviour of the dynamical 
variables in each of these regimes. The response of the system in the low-frequency 
regime is shown in figures 14. Figure 1 shows a hysteresis loop for H ,  = 0.1 Y 

0.02Tc at a frequency w = 0.001, The m - H  equilibrium curve is superposed in 
this figure. We find that the slope of the hysteresis loop is small and comparable 
to that of the equilibrium curve, except for the relatively short periods when n i ( t )  
changes sign. In figure 2 we show the response of the transverse fluctuations 3 to 
the time variations in H ( t ) .  The value of 3 is seen to be quite small when  TIL/ is 
large. It starts rising as Iml decreases. and rises to a value near v / u  soon after m ( f )  
changes sign, and then quickly falls again to small values. This is obvious, as when 
the magnetization is parallel to the field, the transverse fluctuations are small, but 
as the spins turn, the transverse fluctuations become significant, of the order of the 
square of the spontaneous magnetization. For sufficiently small W .  77,; was found to 
vanish, implying the absence of transverse long-range order at low frequencies. In 
figure 3 we plot C,( t )  versus q at various times 1 ,  < 0, ? ?  - 0 and t ,  = t , ,  where 
1, is the coercive time (the time at which n7 changes sign), to show the behaviour of 
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the various momentum modes at different times. In figure 4 we have plotted cq(t) 
versus wl when the magnetic field sweeps from negative to positive values, at q = 0, 
q = q' (defined in (29)) and q = 3q'. 

0.80 "ool A 

0.40t I \  I \  

0.004 I 
-0.10 -0.06 -0.02 0.02 0.06 0.10 

H 
Figure 2. Tne ioop of S versus ii, when iio = 0.i. w = 0.00i 

6.0 

4.0 

2.0 

0.0 
0.0 0.2 0.4 0.0 0.8 

Figure 3. Graph of eq(t) versus 
q for H, = 0.1, w = n.ooi (a) at 
H ( t t )  2 -0.03, (b) at H ( t z )  z 
0.01 and (c) at the mercive field 

0 H(tJ)  z H(t,) 5 0.032. The 
broken cuwes correspand to the 
theoretical approximation (26). 

Figure 5 shows the hysteresis loop precisely at the phase boundary between the 
low-frequency phase and the high-frequency phase. The values used are H ,  = 0.015 
and w 0.002. The characteristic loops on the phase boundary are squarish. As in 
the low-frequency case, the slope of the two branches of the loop is comparable to 
that of the equilibrium curve except in the short interval when n~ changes sign (which 
in this case is near H = fH,). Also in figure 5 is superposed a graph of 3 versus 
the field H at the same frequency. We note that 3 is small except when H ( t )  is 
near the values + H , ,  the coercive field. 

In figure 6 we show a typical high-frequency loop. In this regime, m: is non- 
zero. Superposed are the graphs of 3 and m: versus N. We see that s and mi 
are approximately constant in this graph, and that the ,m-loop is almost an ellipse. 
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0.0 1 
-0.2 0.0 0.2 t ol4 

ot c u t  
1.2, 

-1.24 I 

H 
-0.018 -0.008 0.000 0.000 0 '10 

0.00 

-0.30 

-0.604 I I 
-0.12 -0.06 0.00 0.06 0.12 

U 
11 

Figure 4. Graph of C , ( t )  "er- 
sus wt when the field is swept 
fiGm rzcgatf<G to pi&e yap"es 
(Ho = 0.1, w = O.CQl), a t  q = 0, 
q = q* and q = 39'. The broken 
curves are the approximate solu- 
tion from (26). The approxima- 
tion is excellent up to the wercive 
time 1,. which is indicated in the 
graph. 

Figure 5. Critical loops at Ha 3 

0.015 an$ w E 0.002. (a) is the 
Imp of S versus H, and (b) i s  the 
m-H- loop. At higher frequen- 
cies, S tends t o  become wnstant, 
and the m-H I m p  becomes less 
tilted and elliptical. 

Figure 6. Loops in the high- 
frequency phase when Ha = 0.1 
and w = 0.1. (a) '!'he loop of 
m l  versus H, @) S versus H, 
and (c) m versus H. At higher 
frequencies, m l  tends to become 
constmi. 

This agreement gets better as the frequency is increased, and is explained in the next 
section. 
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One can determine the critical curve separating the m: = 0 solution from the 
mf # 0 solution, by solving for the steady-state behaviour, always keeping mf = 0 
and finding where $ A(1) d t  changes sign. The result is shown in figure 7. At 
very large frequencies, H,  has an approximately linear dependence on w .  The slope 
agrees well with the analytic high-frequency limit H ,  = 2 d m , w ,  derived in the next 
section. At smaller frequencies, we find numerically that the frequency dependence 
of the critical field is well described by H ,  Y bwln[c /w]  with b Y 1.6 and c E 0.25. 
A plausibile argument for this functional form is also given in the next section. In 
figure 8 we show the behaviour of the area of the loop W versus the frequency U, 
when Ho = 0.1. There appears to be a derivative discontinuity in this curve as the 
critical frequency is crossed. 

0 

x Figure 7. The critical CUIW in 
the H o w  plane. The points 
are the numerical data. The 
full C U N ~  (a) is the functional fit 
H, = b i n ( c / w ) ,  with b = 1.581 
and c = 0.2488. The full cuwe 
(b) is the asymptotic formula for 

0.00 0.03 0.06 0.00 0.12 0.15 large w, H, = 2 4 m o .  Beyond 
w '1 0.15, the agreement becomes 

0 . o v  

c3 nearly perfect. 

Figure 8. Graph of the area 

0.000 0.025 0.050 0.075 o.loo when H, = 0.1. dW/dw ap- 
pears IO have a discontinuity at 
w = w, (Ho)  E 0.0295. 

4 of Ihe hysteresis loop versus w 
I 

0.0 1 

c3 

5. Theoretical results and scaling exponents 

The asymptotic behaviour of the area of the hysteresis loops for w tending to zero 
or infinity can be determined theoretically. Consider first the case when w - 0. 
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In this limit, the hysteresis loops look squarish and can be approximated as being 
made up of four branches (figure 9). As we increase the field slowly from large 
negative values to small positive values, the magnetization is roughly constant, and 
increases slowly with the field. This is branch I. On this branch the magnetization 
m(t)  = -mu. As the field is increased to a positive value near the coercive field, 
there is a small time regime when the magnetization switches from -mo to a value 
near +m, (branch 11). For larger fields, the magnetization has a roughly constant 
value near +ma (branch 111). On decreasing the field to a small negative value, the 
magnetization retraces branch 111 for a while, then there is a quick switching of the 
magnetization from +mu to a value near -nio (branch IV). After this, there is again 
slow variation of the magnetization as the field changes (branch I), and the cycle 
repeats itself. As w + 0, the loops contract, and the area of the hysteresis loop tends 
to decrease. 
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Figure 9. The hysteresis loop at 
low fi-equencies can be approxi- 
mated as a parallelopiped. Lines 
I and III  are approximately hori- 
zontal, and I I  and IV have large 
slopes. 

p - p  1 
H 

Consider first the branch I. On this branch we have 

m ( t )  % -mu .  

We rewrite (14) as 

Since on this branch the slope d m / d H  is small, and dH/dt  tends to zero as 
How when w - 0, this implies that, to the leading-order t e r m  in H ,  and w,  we may 
write 

A(1) E +- H ( l )  + terms of order ( H o w ) .  
mu 

In figure 10 we show a graph of A(1) versus w t .  Superposed on this is a 
graph of - H ( t ) / m ( t ) ,  We note that the two curves almost coincide except in the 
neighbourhood of t ,  (by definition m( 1 , )  = 0), where the latter curve has a spurious 
singularity. 
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u t  

Figure 10. The behaviour of A ( t )  
as a function of ut (full cuwe). 
The broken curve is its approx- 
imate expression - H ( t )  /m( t) ,  
which is valid everywhere except 
near t = t , ,  where this approxi- 
mation has a spurious singularity. 

~~.~ 

For a given time dependence of A ( t ) ,  the evolution equation for C,(t) can be 
integrated as 

+ T l :  exp ( - q 2 ( t - t ’ ) + l , t A ( t ” ) d t ” )  d t ’ .  

Substituting for A(t) the approximate value from (Zl), and letting to tend to -a, 
we get 

1 

e , ( t ) = T / ‘  -m e x p ( - q 2 ( 1 - t ’ ) + l /  m, f‘ H ( t ” ) d t ” )  d t ’ .  (23) 

When w is very small, we note that IH(t) l  << H ,  in the region of the loop where 
there are significant changes in m(t )  (branches I1 and IV in figure 9). Therefore 
for fields H ( t )  less than the coercive field H(t , ) ,  H(t)  varies roughly linearly with 

we can write 
tb-.m.e, .rd choosing the zero ol the Lime .“ordinate !U be whea H ( t )  cmsses ZKG, 

(24) H ( t )  = How t + higher order terms. 

Since the dependence of H ( t )  when the magnetization changes significantly de- 
pends only on the product ( How),  it follows that in this limit, the dependence of the 
area W on H, and w is of the form 

W ( H , , w )  = W ( H , w ) .  (25) 

In figure 11 we show three hysteresis curves for different values of H ,  and w. keeping 
( H o w )  unchanged. We see that the scaling equation (25) is obeyed to a very good 
approximation, even for these rather large values of w, when the coercive field is 
close to H , .  

Using (24) in (23), we note that the integral over 1’ is a Gaussian integral, giving 
rise to an error function 
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where 

Figure 11. Graph of a superposi- 
tion of three hysteresis loops with 
the same How product (= lo-'). 
The loop are for Ho s 0.25 (full 
curve), Ho = 0.1 (dotted curve) 
1.d .Yo = 9.05 (brakc;: c m e ) .  

and 

The error function erfc (2) varies asymptotically as exp ( - z 2 )  !z./;; for large z: and 
hence when [q' - H ( l ) / m O ]  is positive and large 

This is the value C q ( t )  would have if the system were in instantaneous thermal equi- 
librium at that value of the magnetic field. For small q, (28) is a good approximation 
to (26) only if H ( 1 )  is negative, or small. For large positive H ( 1 )  and small q, 
we cannot assume that the modes are in instantaneous thermal equilibrium. The 
equilibrium value of e,,,( H = 0) is infinite, but from (X), c,(t) can only grow 
at most to a value of order T J w  for q + 0 at t = 0. We have shown from 

separating these small- and large-q regimes is thus given by 
(28) that for large q; Cq,(t) L? approximate!y equal to T!q2: The cr!xs-Qver value q' 

114 
q'= (Z) 

In figure 3, we cOmDare the approximate solution (26) with the numerically deter- 
mined solutions of eq(t) as a function of q at three different times 1 ,  < 0, t 2  - 0 
and 1 ,  = 1,. In figure 4, we have plotted the numerically determined solution of 
6,(1) as a function of wl as the field is swept from negative to positive values, at 
q = 0, q = q' and q = 3q', and also the theoretical approximation (26).  Clearly, the 
approximation (26) is in agreement with the numerically determined C q ( t )  for all 



Hysteresb in the N-vector model for large N 4981 

times t ,$1, such that IH(t) l  < H,, and for all values of q. The approximation is not 
expected to work very well for large lH( t ) l ,  as then Im(t)l is significantly different 
from mo. This causes a discrepancy of a few per cent between the precise values 
of Cq(t) and the theoretical approximation. However, as is easily seen from these 
figures, the relative variations are very well captured in (26) even as C,,(t) varies by 
more than three orders of magnitude. Modes with q > q' may be approximately 
described as being in instantaneous thermal equilibrium at all times, as is evident 
from the q = 3q' graph in figure 4. 

When q < q*. as t is increased to small positive values, C,(t) grows as 
e x p  ( H o w t 2 / 2 m o ) ,  and we get from (26) 

e x p ( H o w t 2 / 2 m o  - q 2 t )  
T C,(t) - - JHa; 

This is a Gaussian distribution in q, with maximum at q = 0, whose width decreases 
as t increases. For t >> 1, its width varies as l / ,k  Hence integrating over all the q 
modes, we see that on branch I, the behaviour of s( t )  for positive t >> 1 is given by 

T S ( t )  N (max height) x (width)d N - t-d/2 e x p [ H o w t 2 / 2 m o ]  . m 
The approximation (19) breaks down if g ( t )  becomes very large, as then Im(t)l has 
to decrease to preserve the equality in (15). We thus conclude that the coercive time 
t ,  is approximately given by the condition that S(1,) is of order r /u .  The coercive 
field H(t , )  ~ i i  How t ,  is thus given by 

I Y ( ~ , ) ~  - How 1 In [K T( H , w ) ( ~ - ~ ) / ~ ]  1 
where IC is a constant. Since the contribution to the area W of the loops comes 
from its nearly rectangular section, CV a H(t , )mo ,  yielding at low frequencies 

Therefore in this limit, we find that the area of the loops obey the scaling form 
W - Hi'2 w112, with a logarithmic correction. 

In figure 12 we show a log-log plot of the numerically determined solution of 
W / H ,  versus w/H, .  There is also a low-frequency functional fit to the this curve 
from (31), which agrees well with the numerical data. We note that in the log-log 
plot, the graph below the critical frequency appears to the eye to be linear. The 
numerically determined slope of the curve between w - 0.2 and w - 0.02 is zz 0.34, 
so in this region, the area scales as H,0.66w0.34, which is in agreement with the 
exponents obtained by RKP. However, at lower frequencies (w - 0.001). the slope 
increases to about 0.42, closer to its asymptotic value of i .  

Using (31) we can find the relation between the critical field H,(w) when w is 
small. In this case, as noted earlier, the loops are squarish, with the area of the loop 
ES 4m,HD. This gives 

H,(w) = b w l ( l n ( c / w ] (  forsmallw (32) 
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Figure 12. The log-log plot 
of W/Ho versus w / H a  (cir- 
cles) for HO = 0.1. The 
full cuwe (a) is the functional 
fit calculating the area from 
W = aJ(Haw) I n ( l < / H o w ) ,  
with a = 4.94 and Ii = 0.0207. 
The full curye (b) is the asymp- 
totic high-hequency curve W = 
r Hi/zW.  

where b and c are constants. We expect (32) to be the asymptotic form of the critical 
curve at low frequencies and fields. 

We now determine the high-frequency behaviour of the system. At very high 
frequencies, the system does not have time to respond to the changing magnetic 
field. It is possible to make a l / w  expansion in the solution of (14) and (15) as 
follows. To lowest order, m(t)  = 0 because the inversion symmetry of the loop is 
not broken (figure 6). and the solution is 

A(t)  E 0 .  
2 T 

q2 
m ( t )  2 0 ml(t)  5 m; C,(t) 2 - 

Using these for the zeroth-order solution of the dynamical equations (14) and (U), 
we find to first order in l/w 

HO m(t)  = -- coswt + o(1/w2) 2w 

and m:, Cq and A do not change. Using the fact that $ A ( t ) d t  = 0, we find to 
next order in l/w 

m(t)  = -- HO coswt+ O(l/w3) ni:(t) = mi - Hi/8w2 +O(l/w3) 2w 
U H i  (33) 

C O S W ~ + O ( ~ / ~ ~ )  C,(t) = + 0 ( 1 / ~ ~ )  ~ ( t )  = -- 
Q 8w2 
T 

and therefore the limiting form of the area of the loop is 

THO" W E -  2w (34) 

In figure 6, which shows the typical high-frequency behaviour, it is clear that the 
m-H loop is almost perfectly elliptical, its maximum value being H0/2w as derived 
above. From figure 6, it is also clear that m: and i ( t )  are both almost constant near 
the values derived here. From figure 12 we see that the high-frequency behaviour of 
the area agrees well with the solution given in (34). 
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In order to determine the critical curve, we set m: = 0 in (33), yielding to 
leading order 

H J w )  2 . 2 f i m 0 w .  (35) 

This asymptotic solution is superposed on the critical curve in figure 7. The agreement 
is ve!y good when H ,  2 n.15. 

6. Summary and discussion 

In this paper we have studied the dynamics of the O ( N )  symmetric model in the 

shown the existence of a dynamical phase transition in this model signifying the 
onset of long-range order in the system with a non-zero average magnetization in a 
direction perpendicular to the applied field, and have determined the critical curve. 
At low frequencies, the area follows the approximate scaling law W - ( Haw) ' / ' ,  
with logarithmic corrections. There is also scaling at high frequencies where the area 
sca!es as .?,2 /d. %e hive f e d  thi! these res=!% x e  "e fer A! d > 2. 

These power laws are robust, in the sense that no fine tuning of temperature is 
necessary. The system shows this power-law behaviour, so long as the temperature 
is not too close to the critical temperature. They occur in a dissipative system with 
nonlinear dyanamics. Hysteresis thus provides one of the simplest-to-understand 
examples of self-organized criticality [ll]. a concept that has received much attention 
lately. 

Of course, these power laws are seen only for values of H ,  near zero. We note 
that Ha = 0 is a line of f i t -o rde r  phase transitions in the H,-T plane. We have 
noted earlier 1121 that systems on the first-order phase boundary, more precisely in the 
two-phase coexistence region, show self-organized critical behaviour. In equilibrium 
statistical mechanics the two-phase coexistence region is special, as changes in the 
order parameter do not give rise to corresponding changes in the conjugate field. This 
implies that fluctuations can grow to large values as the thermodynamical restoring 
force is zero. In non-equilibrium systems, this gives rise to very slow changes (power- 
law growth or decay in time) in properties, for example in phase separation. To the 
extent that the magnetization m ( t )  lies between -mo and + i n o  in the time when 
hysteresis effects are significant, one is justified in saying that we see power laws in 
hysteresis because in this process, the system is driven so that it lies in the two-phase 
coexistence region. 

We note that our analysis is equivalent to a spin-wave approximation of the 
magnetization dynamics (the large-N limit makes the spin waves for different modes 
effectively decouple). In this case, the gapless nature of the spin-wave excitation 
spectrum at H = 0 is crucial to get the spin-wave instability, which allows the 
magnetization direction to turn continuously. The importance of Goldstone modes 
in self-organized criticality has been noted earlier [12,13]. For magnetic systems, the 
power-law tails in magnetic relaxation in the context of self-organized criticality have 
been discussed by Nowak and Usadel [14], and also by Newman et a/ [IS]. 

correspond- 
ing to the inverse of q' in (29), which can be interpreted as a dynamical correlation 
length. At zero frequency L' + CO, which is consistent with the power-law tail in 

lnmn hi limit .. .Lon it i o  r..h:nr+nA +A A , , - ~ ~ A ~ ~ +  monnn+ir f&lA uln hirm 
1°C". I."I.L, Wl.111 LI .a """JCCLCU L" U L1"'C-UCp'C'.UC"L . u a ~ l L C L L C  L I L I U .  7.- S L U . 1  

We have shown that there is a length scale L' (H, ,w)  5 
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the transverse correlation function when H = 0. These results continue to hold for 
finite-N systems within the spin-wave approximation. Using dynamical renormaliza- 
tion arguments we have found that the low-frequency result a = p = + remains 
unchanged even for finite N. Hence the 'universality class' of the low-frequency scal- 
ing behaviour of the area of the hysteresis loop includes all isotropic N > 2 vector 
models with short-ranged ferromagnetic interactions, in all dimensions d > 2. The 
details of this analysis will be given in a forthcoming publication. 

Of course, the model studied is highly simplified, and effects of magnetic 
anisotropy, dipolar forces, magneto-elastic couplings and eddy currents have not been 
included. Inclusion of these effects can substantially alter the qualitative behaviour 
of hysteresis loops. For example, in the presence of magnetic anisotropy the spins 
do encounter a free-energy barrier, and our analysis does not apply. Dipolar forces 
give rise to domain formation in zero external field, and a large component of the 
response to small external fields then comes trom the motion of domain walls. All 
such effects have been excluded from our analysis. The model we studied can at best 
describe hysteresis in small particles of magnetic materials with small anisotropy, em- 
bedded in an insulating matrix (the size of the individual particles should be $ 10 p m  
so that each contains only a single magnetic domain). A theoretical description of 
hysteresis incorporating these effects remains a challenge. 
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